L CID- 20508

CIRCULATION COPY

SUBJECT TO RECALL
IN TWO WEEKS

COMPUTING SYSTEM FAILURE PROBABILITIES:
A COMPARISON OF SIGMA PI WITH OTHER METHODS

R. M. Thatcher
G. C. Corynen

August 1985

This is an informal report intended primarily for internal or limited external distribution. The
opinions and condusions stated are those of the author and may or may not be those of the
L.aboratory,

Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore Laboratory under Contract W-7405-Eng-48.

DISCLATMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employces, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
uselulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial products. process, or service by trade name,
trademark, manulacturer, or otherwise, does not necessarily constitute or imply i(s endorsement, recommendation, or
favoring by the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the University of
California, and shall not be used for advertising or product endorsement purposes.

Prinded io the United States oF America
Available from
National Technical Informat:on Serv e
LS. Deparlment of Commercee
5285 PPort Royal Road
Springtield, VA 2211

Price: Printed Copyv § Alcrofiche 5450
Domestic Domestic
Page Range Price Page Range Price

001-025 $ 7.00 326-350 $ 2650
026-050 B.50 351-375 28.00
051-075 10.00 376-400 29.50
076-100 11.50 401-426 31.00
101-125 13.00 427-450 32.50
126-150 14.50 451-47: 34.00
151-175 16.00 476-500 35.50
176-200 17.50 501-525 37.00
201-225 19.00 526-550 38.50
226-250 20.50 551-575 40.00
251-275 22.00 576-600 41.50
276-300 23.50 601-up'
301-325 25.00

'Add 1.50 for each additional 25 page increment. or portion
thereof from 601 pages up.

Title

TABLE OF CONTENTS

Executive Summary..sessesseasseses

Abstract

1.

2.

Pe e e e ensens e e

]

Background - Major Issues - Computational ProblemS...ceeceescescnssass

1.1,

1.2.

1-3-

Current Methods of Evaluating P(S).....

2.1,

2.2.

Evaluation of Fault Trees..

Purpose of This Report.c.cveeceeenecnenns

Major Problems That Impact Upon the

Efficient Calculation of P(S)ueevevennse

1.3.1.

1.3.2.

Algebraic Problems.

S e e P00 e e

Probabilistic Problems.......

Bounding MethodS..iv.ieeeeeeeeeaasnne

Exact MethodsS.cevaeeeeoes

2.2.1.
2.2.2.
2.2.3.

2.2. 4,

The Inclusion-Exclusion Method....

The Disjointing Method - Some More Problems.......

Leading Disjointing Methods.......

The SIGMA PI Method

Page

iii

10
12

14

TABLE OF CONTENTS (Continued)

Title Page
3. Comparing SIGMA PI With Other MethOodS...eeeeeinesnsnossossssncsseassses 18
3.1. Introduction....ceeeeseesasencnenes o teesecrascasssssaaransas 18
3.2, Bounding MethodS.eeeeesesesaosasesescsnsasasscsnoscasasssasssasasasass 20
3.2.1. SUM and MINIMUM CUT.eeeoecronsrenronsscocsnsnasosssnossassnas 20
3.2.2. Hunter's BOUNd..eeseessosocasccasssosssnssossssesssnsannsane 24
3.3, Exact MethodsS..ueeeeeneecoccnessronscanssossnensncsssacnsesassasns 27
3.3.1. Experiment #1 - Comparing SIGMA Without PROBisieesoessecesass 28

3.3.2. Experiment #2 - Comparing the Full SIGMA Method......voees. 31

3.4. Comparisons When Basic Events are Dependent.....cceeeesecsscncass 3

AcknowledgmentS, coueeeoansssscassrsasssvssnassna

P 1

Ref e enNCeS s iineerasescescsonsraanessososssasasorsonsnasssessassasssasnsacs 37

-ii-

EXECUTIVE SUMMARY

Performing a risk assessment of a nuclear power plant requires the study
of complex systems. Because of this complexity, the issues of size, speed,
timing, and accuracy become important when considering the uses of a computer
in the analysis. In addressing issues concerning analysis of probabilistic
events, the Lawrence Livermore National Laboratory (LLNL) has developed the
SIGMA PI method of computing the probabilisti~ performance of complex systems,

A detailed description of SIGMA PI has been reported previously in
Ref, 3. Included are some performance comparisons among leading alternative

methods of evaluating system failure probability, P(S), from a set of minimum

cut sets.

Purpose
The purpose of this report is to demonstrate that SIGMA PI is the first
method which addresses all of the major problems that have prevented

successful evaluations of P(S) in the past. To accomplish this purpose:

1) We present a description of these major problems,

2) Then we describe how leading alternative methods, including SIGMA
PI, address these major problems, and

3) Then we use the performance comparisons of SIGMA PI with leading
alternatives, that were reported previously, to display the

uniqueness of the SIGMA PI method.

The major problems are of two types: algebraic and probabilistic.

-iii-

Algebraic Problems

Algebraic problems arise because minimum cut set probabilities cannot be
combined arithmetically to produce an accurate value of P(S). Therefore, the
original set of cut sets must be manipulated algebraically to form an

equivalent set of product sets whose probabilities can be so combined.

Probabilistic Problems

Probabilistic problems deal with the probability calculation of product
sets, which are Boolean products of basic events. Product sets with dependent
basic events can require more calculations for evaluation than even the
fastest computers can provide, whereas, sets with independent basic events can
be calculated very quickly.

Another probabilistic problem is the development of adequately defined
stopping rules for terminating probability calculations when sufficient
accuracy has been attained. Stopping rules can result in significant
reductions in computer running times.

Available alternatives to SIGMA PI are of two types: bounding methods

and exact methods.

Bounding Methods

Before results of research on algebraic problems cited above were
available, bounding methods, which tried to by-pass these problems, were
necessary for evaluating large fault trees. Bounding methods are still in
use, even though their formulas are not expected to give correct

probabilities, even when the given formula is calculated accurately.

In this report, we present results from the application of two upper
bounding methods to five nuclear power plant safety system fault trees. These
two methods are known as "SUM" and "MINIMUM CUT." A comparison with accurate
failure probabilities for these same fault trees computed by SIGMA PI
demonstrate the unreliability of bounding methods in general.

We also explain in this report why the formula for Hunter's bound can
require more computer time to compute an upper bound to P(S) than that

required by SIGMA PI to compute P(S) accurately.

Exact Methods

The only viable exact methods available today are disjointing methods,
which compute a set of disjoint sets from the original set of minimum cut
sets. Disjointing is a technical solution to the algebraic problems cited
above; i.e., the disjoint set probabilities add up to P(S).

By 1981, the three leading disjointing methods today were available:

1) Nakazawa (1977), 2) Abraham (1979), and 3) STOP (1981). 1In this report, we
present results from the application of these three methods to the same series
of cut set problems. Each method computed the same value of P(S) "exactly,"
i.e., to machine accuracy.

These results show that the relative speed of STOP increased from about
five to eight times the speed of Nakazawa, and from about eleven to fourteen
times the speed of Abraham, as the number of nasic events in the tree
increased from 30 to 45, Comparisons on larger trees were not made because it
was not feasible to run the computer long enough to let the Nakazawa and

Abraham methods finish their runs.

-y -

The SIGMA PI Method

Although disjointing methods solved many problems, they presented some

new problems of their own. All of these problems motivated the design and

development of the SIGMA PI method.

The special features used by SIGMA PI to address the above problems are

summarized as follows:

Algebraic Problems:

D)

2)

The SIGMA method uses the STOP algorithm to generate disjoint
sets for quick accuracy.

It also uses a technique called DECOMP to exploit special
structures in the cut sets to increase the speed of the

disjointing process.

Probabilistic Problems:

1)

2)

The SICGMA method avoids lengthy calculations by using a
technique called PROB to generate only sufficient disjoint sets
required for a prespecified accuracy. PROB provides firm upper
and lower limits to P(S), which it uses as the basis for a
stopping rule, and which verify that the specified accuracy has
been attained. Thus, PROB retains full control over accuracy.
The PI method further reduces computation times by converting,
where possible, any set of independent basic events into

multiple sets of conditionally independent basic events.

-vi-—-

PI is not programmed for computer operation. Instead, the user
applies the PI method to the given problem set as he prepares

it for input to the SIGMA program.

In this report, we present results from the application of the SIGMA PI
method on a single problem of medium size. 1In this experiment, accuracy in
P(S) as a function of computer time expended is plotted. From this
experiment, we estimate that the full SIGMA algorithm would compute P(S) to
three place accuracy 40 to 70 times as fast as the speed attained by STOP
alone. The relative speed of SIGMA over STOP in attaining three place

accuracy tends to increase as fault tree size increases.

-vii-

ABSTRACT
SIGMA PI is the fastest method available today of accurately calculating
probabilities associated with large fault trees. To demonstrate this, we
describe the major problems that have prevented successful evaluation of these
probabilities by other methods in the past. Then, we describe how SIGMA PI
addresses all of these problems, and we compare the performance of SIGMA PI

with that of leading alternative methods under selected problem scenarios.

1. BACKGROUND - MAJOR ISSUES - COMPUTATIONAL PROBLEMS

Performing a risk assessment of a nuclear power plant requires the study
of complex systems. Because of this complexity, the issues of size, speed,
timing, and accuracy become important when considering the uses of a computer
in the analysis.

Analysts are under increased pressure from decision makers to develop
more defensible analyses of probabilistic events. To adequately plan for such
events, analysts must calculate event probabilities with as much precision as
data and computational resources allow. Because the causes of such events are
so involved, current methods are imprecise, and bounding methods have been
employed. Even when exact determination of absolute probabilities is not
important, it is essential to accurately assess variations in these
probabilities as factors or parameters are varied. This assessment has been
difficult to do because available bounding methods can only employ bounds on

variations that were estimated with bounds in the first place.

1.1. EVALUATION OF FAULT TREES

The first step in evaluating P(S), the failure probability of a system
(S), is to convert its fault tree into a Boolean sum of minimum cut sets.
This set of minimum cut sets is called a problem set. P(S), the probability
of the top event of the fault tree, is the probability of the union of the
minimum cut sets,

Fault tree analysis programs, such as FTAP (see Ref. 13), exist for
generating problem sets from fault trees. But there are many problems that
impact upon the efficient calculation of P(S) from a generated problem set.

In addressing problems concerning analysis of fault trees, the Lawrence
Livermore National Laboratory (LLNL) developed the SIGMA PI method of
computing P(S) from a fault tree problem set.

A detailed description of SIGMA PI has been reported previously in
Ref. 3, which is the source of information for SIGMA PI descriptions given
throughout this report. Included are some performance comparisons among
leading alternative methods of evaluating system failure probability, P(S),
from a set of minimum cut sets.

This report was partially supported by the Division of Risk Analysis and
Operations, Office of Nuclear Regulatory Research, and is a task deliverable
for their project entitled, "Efficient Probabilistic Computations and Methods

for PRA"™ (FIN No. A0392).

1.2. PURPOSE OF THIS REPORT
The purpose of this report is to demonstrate that SIGMA PI is the first
method which addresses all of the major problems that have prevented

successful evaluations of P(S) in the past. To accomplish this purpose:

1) We present a description of these major problems,

2) Then we describe how leading alternative methods, including SIGMA
PI, address these problems, and

3) Then we use the performance comparisons of SIGMA PI with leading
alternatives, that were reported previously, to display the

uniqueness of the SIGMA PI method.

We begin by describing some of the major problems that have prevented
effective evaluation of P(S). In later sections of this report, we describe
more problems encountered in applying disjointing techniques, so that still
later we can describe SIGMA PI in a manner that demonstrates, specifically,

how it addresses all of these problems.

1.3. MAJOR PROBLEMS THAT IMPACT UPON THE EFFICIENT CALCULATION OF P(S)

Major problems that impact upon the efficient calculation of P(S) are of

two types: algebraic and probabilistic.

1.3.1. Algebraic Problems

P(S), the system failure probability, is the probability of the union of

the minimum cut sets in the problem set:

T T N(j)
P(S) = P<U C(j)> = P<U N B(i,i)»
=1 j=1 i=1

where:

T is the number of minimum cut sets in the problem set,
C(j) is the jth cut set,
B(i,j) is the ith basic event in cut set C(j), and

N(j) is the number of basic events in cut set C(j).

The calculation of the union of cut sets is difficult even when accurate

cut set and basic event probabilities, P<C(j)> and P<B(i,j)>, can be

computed. The reason is that almost always some of the cut sets will have one

or more basic events in common, so that the sets are not disjoint. Therefore,

in general:

T T
PCU C(3)> #) PC(i)> .
J=1 J=1
This leads to the problem of manipulating the original set of cut sets
algebraically to form an equivalent set of Boolean products that is
"ecomputable," i.e., whose probabilities can be combined by computationally

efficient operations to yield P(S).

In Section 2, we shall examine the twc best known methods of generating

equivalent sets of this kind:

1) The inclusion-exclusion method,

2) The disjointing method.

1.3.2. Probabilistic Problems

Any method of computing P(S) from a set of Boolean product sets,
{D(j)}. must include a method of computing product set probabilities:
N(j)
P(D(i)) = P(N BG,))
i=1
where B(i,j) is the ith basic event in set D(j), and N(j) is the number of
events in D(j). The time requirements for this calculation are linear in the
number of statistically independent basic events, but they are usually
exponential in the number of dependent basic events. Section 2.4 of Ref. 10
explains why this is so when the underlying component stress - strength
probability distributions are assumed to be normal. The data given (which was
derived from Ref. 9) shows that only six dependent basic events in a set can
require 50,000 times as much computer time as when the same six are statis-
tically independent. For this reason, sets with five dependencies are usually
considered as a cut off limit for feasible evaluation,
Another probabilistic problem is the development of adequately defined
stopping rules for terminating probability calculations when sufficient
accuracy in P(S) has been attained. Stopping rules can result in considerable

savings in calculations performed.

2. CURRENT METHODS OF EVALUATING P(S)

There are only two kinds of methods available for evaluating P(S):
bounding methods and exact methods. In this section, we shall describe these !
two kinds in general, and then identify and describe three leading methods of
each kind. Then, in the next section, the performance of SIGMA PI will be
compared on selected problem sets with performances of the other five
methods. Also, some of the differences in approaches used by these methods

will be discussed.

2.1. BOUNDING METHODS

Before algebraic methods of manipulating minimum cut sets into equivalent
Boolean products were developed, it was necessary to rely on bounding methods
to evaluate P(S). Even today, in practice, only bounding methods appear to be
available to evaluate P(S) for large system fault trees. The results are
often unsatisfactory because bounding methods are not expected to give correct
answers even when the given bounding formula is calculated accurately.

Also, some seemingly straightforward bounding methods, such as Hunter's
bound, reveal, after implementation, that they can exceed some exact methods
in their requirements for computer time. This can tempt the user to invent
short cuts to the calculations for the bounding formula, ("since we are only
after an approximation anyway"). This then opens the door to procedures whose
outcomes are incomprehensible. An explanation of why Hunter's bound can be so

difficult to compute is given in Section 3.2.2 below.

Three upper bounding methods that have been applied to nuclear power

plant safety system fault trees (see Section 3.4.2 of Ref., 11) are:

T
1) 1 P(C()) ngyM"
J=1
T
2) 1.0 - 0T (1.0 - P(C(iN) “MINIMUM CUT"
j=1
T
3) 1 P(CG)) -) P(C(i) N C(i)) "Hunter's"
J=1 (i,3)er
where:
o C(j) is the jth minimum cut set,
o T is the number of minimum cut sets in the fault tree,
o T is a subset of T-1 pairs out of the set of all possible (i,j)

pairs, selected appropriately to guarantee an upper bound, and

to maximize the second sum in (3).

In comparison to (3), it is interesting to note that the first two terms
of the inclusion-exclusion method:

4) P(C(J)) -) P(C(i) M C(j))y

1 all (i,j)

i t~1

produce a lower bound to P(S) (see Chapter IV of Ref. 4).
The first bound, "SUM," is an upper bound to P(S) unless all minimum cut
sets are disjoint, in which case equality holds. Thus, the effects of any

common events among minimum cut sets are not taken into account by SUM as an

approximation to P(S).

The second bound, known as the "MINIMUM CUT" upper bound, is an upper
bound to P(S) unless all cut sets are statistically independent, in which case
equality holds. Lambert (Ref. 7) also points out that, if all basic events
are statistically independent, then equality holds if and only if none of the
basic events in the fault tree is replicated, i.e., if and only if each basic
event is input to only one gate in the fault tree,

Both the SUM and the MINIMUM CUT upper bounds become more accurate
estimates of P(S) as the basic event probabilities get smaller. Section 2.4.1
of Ref. 7 presents an example which demonstrates this fact for the MINIMUM CUT
upper bound.

The third bound (3) is known as "Hunter's upper bound," and (4) is often
referred to as "Hunter's lower bound" (Refs. 5, 6). Hunter's upper bound is
developed as follows:

The T cut sets of a fault tree are treated as nodes of a graph with cut
set intersections as ares. Any T-1 (i,j) pairs of arcs that form a spanning
tree, will guarantee that (3) will form an upper bound to P(8). 1In order for
the bound to be minimum, the cut set arcs are selected to maximize the second
sum in the formula over all spanning trees. Algorithms are in use (for
example, see Ref. 12) that can find the maximal spanning tree using computer
times that increase as T2. This time does not :nclude the time required to
calculate the cut set intersection probabilities, {P(C(i) M C(j))}.

We can now see that the minimizing requirement for either of Hunter's
bounds includes the probability calculation of all possible pair-wise
combinations of the cut set intersections, (C(i) M C{(j)), of which there are
T(T-1)/2. Each of these cut set arcs are new sets formed by the basic events

from two original cut sets.

2.2. EXACT METHODS
The two best known methods of generating a "computable" set of Boolean

products from a problem set are:

1) the inclusion-exclusion method, and

2) the disjointing method.

Of these two, the only viable method is the disjointing method. We
include a discussion of the inclusion-exclusion method here because it is so
well known (see Ref. U4), and because it is of interest to identify some of the

complexities involved in trying to use it to compute P(S) accurately.

2.2.1. The Inclusion-Exclusion Method

The fact that set probabilities of the well known inclusion-exclusion
method converge to P(S) (Ref. 4):
T T T
P(S) = 1 P(C(3)) - I 1 PCUH)Y M CU)+ e
J=1 i=1 j=1
where T is the number of minimum cut sets, has made it a tempting algorithm to
run on a high speed computer.
Our discussion of probabilistic problems at the end of Section 1.3 makes
it clear that this series cannot be computed for even small problem sets where
basic events are statistically dependent, since it requires the generation and

evaluation of larger and larger product sets. In fact, in Section 3.2.2

below, we show that Hunter's bounds, which involve calculations that are
equivalent to only the first two sum terms of this series, is effectively
eliminated when basic event dependencies exist.

A fact that is also becoming better known is that, even for medium
problem sets, and with all independent basic events, converging to an accurate
value of P(S) with this series of product sums is still beyond our fastest
computers today. The problem is that the cumulative sum has a tendency to

oscillate wildly between large positive and negative values for too many sum

terms before it begins to converge.

2.2.2. The Disjointing Method - Some More Problems

The disjointing method converts the problem set, {C(j)}, into an
equivalent set of disjoint sets, {D(j)}, expressed as another Boolean sum of
Boolean products of basic events. The fact that the new sets are disjoint
means that, if the new set probabilities can be ecalculated, accuracy is

assured because the disjoint set probabilities add up to P(S), i.e.:

T v v

p(s) = plu cly)) = pr(uw 0(3)) = 1 plo(3))
3=1 j=1 j=

where V is the number of disjoint sets generated.

However, there are some problems with the disjointing method:

1) The new set of disjoint sets, {D{(j)}, tends to be much larger than

the original problem set, {C(j)}. The first set generated will have

10

2)

3)

)

only a few basic events, but as new sets, D(j), are generated, they
tend to increase in size in a pyramidal fashion. Also, V, the
number of new sets, tends to increase considerably over T, the

number in the original problem set,

Available disjointing algorithms are designed to generate all of the
V disjoint sets, and to compute P(S) from their probabilities "to
machine accuracy.” 1In the literature, this type of method is

referred to as an "exact" method.

From the previous discussion of probabilistic problems, we can see
that basic event dependencies can prevent the probability
calculation for many of the disjoint sets. If only the evaluated

set probabilities are added, the result is a lower bound to P(S).

A stopping rule applied to a disjointing method could result in
significant reductions in computer running times. If all basic
events are independent, it is possible to calculate probabilities
for all V disjoint sets that the computer can generate with the
given disjointing algorithm. But usually two or three decimal
places is all of the accuracy that is required. Since the first
disjoint sets are the shortest, and the shortest tend to contain the
largest probability values, only a relatively few of the first ones
generated will contain enough of the required probability value to
give the accuracy that is normally needed. Fortunately, the

shortest sets are also the easiest ones to evaluate.

‘I‘l

It is noteworthy that, thus far, no exact methods have been used to aid
in the evaluation of risks associated with large nuclear reactor and safety

systems.

2.2.3. Leading Disjointing Methods

By 1981, the following three leading methods were available:

1) Nakazawa's Method (1977, Ref. 8),
2) Abraham's Method (1979, Ref. 1), and

3) The STOP Method (1981, Ref. 2).

A complexity analysis, reported in Chapter 4 of Ref. 3, indicates that,
in the worst case, STOP requires computer time that is weakly exponential in a
function of N, the number of basic events in the set. A weakly exponential
function of N is defined as:

eK°N , where K < 1 .

In fact, K*N is equal to C(min), the size of the shortest cut set. This

places STOP on the borderline with polynomial complexity because K is normally

very small, i.e.:

K = C{min)/N .

..12_.

the ratio of the shortest cut set to the full set dimension. For example, if
C(min) is three basic events, and N is 100 basic events, then K = 0.03.

An examination of the algorithms used by Abraham and Nakazawa indicates
that their complexities are "strongly exponential” (K > 1.0).

These findings are consistent with performance test results presented in
Section 3.3.

The efficiency of the STOP algorithm is due, in essence, to the parallel
fashion in which it manipulates the given problem set. The first step is to
decompose the problem set into disjoint and simpler problem sets along a
carefully chosen coordinate. Then, each new set is similarly decomposed.
This process continues until, in the limit, a collection of mutually disjoint
simple sets is obtained.

This contrasts with the sequential operations in the Abraham method which
does not view the cut sets as a whole, 1Instead, each new set is added to the
union of previously processed sets, an operation that is strongly exponential
in complexity.

The Nakazawa disjointing method shares a technique in common with STOP
which retains "prominent" coordinates at a crucial step in the disjointing

process. This technique makes Nakazawa's method a little faster than

Abraham's.

1981 Technology Summary

We summarize the fault tree technology available in 1981:

13

1) Fault tree analysis programs (e.g., FTAP) were available to generate
problem sets from fault trees.
2) Disjointing algorithms were available to convert problem sets into

sets of disjoint sets, whose probabilities add up to P(S).

Disjointing algorithms are a technical solution to the algebraic and
probabilistic problems described in Section 1.3. However, problems with the
disjointing method, described in Section 2.2.2 and in this section, still
needed to be resolved.

The single most significant technical development since 1981 that
justified the creation of the SIGMA PI method is the DECOMP algorithm. As
described below, DECOMP works with STOP to perform disjointing of most problem
sets of interest in computer time that is still borderline exponential in N
for smaller problem sets, but approaches linear complexity as N gets large.

The dramatic improvement in disjointing speed due to the use of DECOMP is

demonstrated by results of performance tests reported in Section 3.3.

2.2.4, The SIGMA PI Method

SIGMA PI consists of two methods, SIGMA and PI. SIGMA computes P(S) by
summing (Z) disjoint set probabilities. The PI method prepares independent
basic events for multiplying (H) their probabilities. By a careful merging of
several analytic techniques in SIGMA with the PI method, SIGMA PI addresses
all of the major problems that impact upon a successful evaluation of P(S).
Thus, SIGMA PI is the first method to be dedicated to the rapid and accurate

calculation of P(S) for large systems.

‘lu

The SIGMA Method:

SIGMA is an efficient method of developing a sufficient number of
disjoint sets, {D(j)}, from a given problem set, {C(j)}, to permit the
calculation of P(S) to a desired prespecified accuracy. P(S) is

calculated as the sum of the probabilities of the disjoint products:

P(s) = P{ U c()) =Y PODG) .
J J

The efficiency of SIGMA is due to several techniques that it employs:

1) STOP
The STOP algorithm was developed in 1981 at the LLNL
(Ref. 2). STOP is a very fast method of generating a complete
set of disjoint sets from a given problem set, and then
computing P(S) from them, When operating alone, STOP

calculates P(S) to "within machine accuracy," i.e., STOP is an

"exact" method.

2) PROB
Under the SIGMA PI mode, each time STOP develops a new
level of disjoint sets, a routine called PROB computes firm
upper and lower bounds to P(S), which it uses as the basis for
a stopping rule. These bounds converge rapidly at first and

then more slowly as the disjointing proceeds. When these

..1 5_-

bounds agree to within the accuracy specified by the user, PROB
terminates the calculation. Experience shows that, for medium
Size problems with about 30 basic events, usually less than
five percent of STOP's complete disjointing effort (which gives
P(S) to machine accuracy) is sufficient to obtain three place
accuracy in P(S). This percentage decreases as the number of

basic events is increased.

3) DE COMP

The DECOMP algorithm examines a given problem set and
finds any blocks among them. A block is a special subset, C',
of the original set of cut sets, C, defined as follows: Let B
be the set of basic events in the problem set, C. Then C' is a
block if two conditions hold: 1) for the subset, C', a subset,
B', of B are all don't cares; 2) for the rest of the cut sets,
C"=C-C', the set of basic events, B" = B - B', are all
don't cares. A more complete description of blocks is given in

Chapter 3 of Ref, 3.

Under normal circumstances, the original problem set will have come from
a single fault tree, and most often will consist of only a single block. But
STOP will pivot on the optimal coordinate for disjointing the problem into two
disjoint problem sets. Some of the new problem sets generated by repeated
pivoting will be blocks. Whenever PROB determines that more disjointing by

STOP is required, control is released to DECOMP which starts a new cycle by

-16-

finding any blocks which STOP may have generated during the previous cycle.
DECOMP controls the feeding of blocks back to STOP for separate and,
therefore, efficient disjointing.

The complexity analysis of the SIGMA method, reported in Ref. 3, assumes
the normal circumstances described above. The "expected" complexity obtained
for large problem sets approaches linearity due to the ability of DECOMP to
exploit the many block structures that are normally expected in large problem
sets. By contrast, the Abraham and Nakazawa complexities are still strongly
exponential under normal circumstances because they are insensitive to block

structure.

The PI Method:

The probabilistic problems described in Section 1.3 above provide a
strong motivation for avoiding, where possible, dependencies among basic
events., Such an opportunity presents itself whenever dependencies among
some basic events are due to a mutual correlation with a "common-cause
event." It is for this commonly occurring opportunity that the PI method
was developed formally. Chapter 2 of Ref. 3 presents a detailed
description of the PI method,

Briefly, PI is a method of examining input failure distributions for
common-cause dependencies, making suitable choices of common-cause random
variables, and conditioning on them appropriately. These steps are
performed by the user as he prepares the problem set for input to the
SIGMA computer program. Performance of the PI method results in the

conversion of a set of dependent basic events into multiple sets of

17

conditionally independent basic events. SIGMA now must compute multiple
probabilities for the same set, D(j). Section 1.3 above explains why the
time required to compute P(D(j)) only once with dependent basic events
can be orders of magnitude greater.

Figure 1 illustrates the merger of the three major techniques in

SIGMA with the PI method into the SIGMA PI method.

3. COMPARING SIGMA PI WITH OTHER METHODS
3.1. INTRODUCTION

SIMA PI is the first method which addresses all of the major problems
that have prevented effective evaluation of P(S) in the past. At this level
of problem dedication, SIGMA PI is unique, i.e., no alternative methods have
been designed to compete with SIGMA PI. The leading available alternative
methods of evaluating P(S) are either exact methods or bounding methods.

Strictly speaking, SIGMA PI should not be classified as an exact method
because it can control accuracy, and exact methods are designed to calculate
P(S) to machine accuracy every time. Since it can also compute P(S) exactly,
we shall call SIGMA PI a "controlled exact method."

Neither can SIGMA PI be classified as a bounding method in the usual
sense because the upper and lower bounds which it computes are firm, and will
converge to the "exact" value eventually, if processing is allowed to
continue. By contrast, bounding method formulas that are still in use to

evaluate large systems are not expected to be correct even when the given

formula is calculated "exactly."

18

System

Fault o

Tree

Probablility
Distributions

for Bagsic ——— I

Events

Fault Min.
Tree Cut _H
Analysis Sets
SICMA
ECOMP P(S)
System
o STOP ———— Faillure
Probability
PROB.
A
PI
Maximize
Number of Basice
ndependent [—™Event
Basic Events Failure
(by conditioning) Probabilities

THE SIGMA PI METHOD

Figure 1

-19-

Due to this uniqueness in the SIGMA PI method, it is desirable to begin
our tests by comparing individual features of SIGMA PI with alternative
methods that perform the same function. We do this in our performance
comparisons below by first stripping away some of the techniques that SIGMA PI
uses for full performance.

Our most basic assumption is that each comparison alternative method
applies the PI method to the original basic events equally. We need this
assumption for comparing with SIGMA because it provides a common basis for
fair comparisons, i.e., it assumes that all methods deal with the same basic
event dependencies in the tests. This assumption was invoked in all of the
performance tests reported below by running them with statistically
independent basic events.

This independence assumption ignores the difficulties incurred in
computing set probabilities when basic events are dependent; a difficulty that
is common to all comparison methods. The approaches taken by the alternative
methods to deal with these difficulties are compared qualitatively in

Section 3.4,

3.2, BOUNDING METHODS

3.2.1. SUM and MINIMUM CUT

Failure probabilities, P(S), for five nuclear reactor subsystems
subjected to a heavy earthquake, were computed by upper bounding methods (1)
and (2), as defined in Section 2.1 above. These values were compared with
accurate values of P(S) computed by the SIGMA PI method. The results are

displayed in Table 1.

2 O.

21

Table 1. P(S) Probabilities for Five Nuclear Power Plant Systems
Upper Bound
No. of No. of Formula SIGMA PI

System Basic Cut SUM MIN CUT P(S) Computer
Number Events Sets JP(C(j)) 1-M(1-P(C(j))) Probability *Time - Cray

1 u8 234 0.0095 0.00939 0.00886 0. 625

2 137 129 3.53 0.942 0.942 2.48

3 199 295 2,04 0. 989 0.989 6.87

4 72 64 3.59 0.991 0.9N 0.59

5 122 309 4,64 0. 989 0.939 1.46

*¥ Seconds

As predicted, SUM is a close upper bound to SIGMA PI's accurate value of
. P(S) for the low probability system (P(S) = 0.00886); and obtains impractical
bounds (exceeding unity) for the other four systems, in which the true failure
probabilities exceed 0.93.

The fact that the MINIMUM CUT upper bound (2) attained close agreement
with SIGMA's accurate values for all five systems would not have been
predicted, because it was known that many of the cut sets were statistically
dependent. However, two conditions could have existed that would still

explain this unexpected result. The MINIMUM CUT formula would be accurate if:

1) The total value of MINIMUM CUT was determined by only a subset of
the cut sets, and
2) The cut sets in this dominant subset were nearly mutually

independent, statistically.

We present some arguments below in support of the possibility that these
two conditions existed, based on the fact that these systems had unusual
algebraic and probabilistic structures.

When these five systems were evaluated for Table 1, the PI method was
applied to the common-cause earthquake in a manner outlined in a prior
section. This provided independent basic events for this problem. However, a
fairly large number of basic events were observed to be repeated often in many
of the cut sets, so on the surface, many of the cut sets would have a high
degree of statistical dependence among them. Under this condition, the close
agreement with SIGMA PI's accurate values which we obtained would not have

been predicted.

_22-

Two other unusual conditions existed among these five problem sets,

however:

1) Most of the cut sets had only one or two basic events, so that the
average cut set size over the five problem sets was 2.1 basic
events., From Table 1, we can see that there were over half as many
basic events as there were cut sets. It follows that if enough
basic events were repeated quite often, then probably there was a
fairly large subset of cut sets that had no basic events in common,

i.e., they would be mutually independent among themselves.

2) Many basic event probabilities were "tiny," i.e., in the 10-12
range, while most of the balance of the basic event probabilities

were "significant," i.e., between 0.0001 and 0.5.

This dichotomy extends to the cut sets; i.e., those that have no tiny
basic events are the only ones that could have any significant influence on
the true value of P(S). Therefore, if most of the repeated basic events were
the tiny ones, then the subset of mutually independent cut sets would tend to
be the ones that have significant probability values. These are the
conditions under which MINIMUM CUT becomes an accurate estimator of P(S).

In general, we can say that whenever a dichotomy of basic event
probabilities exists, as was observed for these five problem sets, the
accuracy of the MINIMUM CUT formula tends to increase, as the number of

repeated basic events that are significant decreases.

23

Calculation Times:

By using the PI method to obtain conditionally independent basic events,
the time requirements to calculate the cut set probabilities, P(C(j)), for the
two upper bounding formulas (1) and (2) became negligible.

The times shown for the SIGMA method were measured under difficult test
conditions, and include considerable input/output time for processing data

files. It is believed that the true times consumed by SIGMA were less than

half of the values shown,

MINIMUM CUT Conclusions:

We have just demonstrated that the MINIMUM CUT formula can give an
accurate estimate of P(S) when conditions are "right" among the problem set
and the basic event probabilities. We also know that MINIMUM CUT is an
inaccurate estimator of P(S) under most problem set conditions. Perhaps the
selective use of MINIMIM CUT to save computer time could be justified if an
efficient method were available for detecting when "right" conditions exist
that would guarantee a given level of accuracy in the computed value of P(S).

The modest added cost of using SIGMA PI to calculate P(S) is justified by

the accuracy guarantee that it gives on all problem sets which it evaluates.

3.2.2. Hunter's Bound

In Section 2.1, we saw that either of Hunter's bounds (upper or lower)
requires the probability calculation of all possible pair-wise combinations of

the cut set intersections, (C(i) M C(j)), of which there are T(T-1)/2, and

..2)_‘-

that each combination is a new set formed by the basic events from two
original cut sets.

If the basic events are mutually independent, the set probabilities can
be computed as products of their basic event probabilities. Even so, this
calculation requires a significant computational effort for merely an upper
bound (polynomial in T).

If many of the basic events are statistically dependent, no computer
today has the capability of calculating Hunter's bound, unless each cut set is
limited to a maximum of two dependent basic events. This effectively
eliminates the use of Hunter's bound for even small systems with dependent
basic events.

The following example displays the enormous complexities caused by

dependent basic events even when all cut sets are limited to two.

Example: Comparison of Dependent vs. Independent Basic Events,
The largest system in Table 1 above has 309 cut sets. Assume each
cut set has two basic events. We shall compare the number of ESVNIs

(Equivalent Single Variate Normal Integrals) required to compute Hunter's

bound:

1) When all basic events are independent, vs.

2) When all basic events are dependent.

For the first term in Hunter's bound, we must calculate 309 cut set

probabilities, each of which has two basic events. For the second term,

25

we must compute (309 * 308)/2 = 47,586 set probabilities, most of which

has four basic events.

1) Independent Basic Event Calculations ESVNIs
309 C.S. * 2 B.E./C.S. = 618
47,586 Sets * 4 B,E./Set = 190,344

TOTAL 190,962

2) Dependent Basic Event Calculations
From the Appendix of Ref. 10, we get:
* Each two-variate normal integral requires 14 ESVNIs,

* FEach four-variate normal integral requires 2,642 ESVNIs.

ESVNIs
309 C.S. * 14 ESVNIs/C.S. = 4,326
47,596 Sets * 2,642 ESVNIs/C.S. = 125,748,632

TOTAL 125,752,958
Conclusion:
Even when each of the 309 cut sets is restricted to two basic events

per cut set, Hunter's bound requires:

191 thousand ESVNIs for independent basic events, and

126 million ESVNIs for dependent basic events,

26

This problem set requires nearly 660 times as much computer effort for

dependent basic events as for independent basic events.

This ratio escalates when larger cut sets are used in the problem set.

3.3. EXACT METHODS

For the first performance tests PROB and DECOMP are stripped away from
SIGMA, leaving STOP, the exact method, to be compared with two leading
alternative exact methods. The results verify that STOP is a good disjointing
algorithm to use in the SIGMA method.

Further performance tests demonstrate that increasingly larger systems
can be evaluated as SIGMA features are added, successively, back to STOP.

Performance comparison data presented in this section was taken from
experiments that were reported previously in Ref. 3. The Abraham method and
the Nakazawa method are leading exact methods of computing P(S) from minimum
cut sets, which we compare below with various levels of SIGMA. As another
exact method, STOP, when operating alone, computes the same value for P(S) as
these other two methods. 1In the performance tests below, we are interested in
comparing the computer times required to compute this value.

For these tests, we adhere to a strict interpretation of the capabilities
of these two alternative disjointing methods, as presented in their references
given above.

Two comparative experiments were conducted.

27

3.3.1. Experiment #1 - Comparing SIGMA Without PROB

For experiment 1, each algorithm was run on the same set of random
problems, with N, the number of components ranging between 30 and 50. T, the
number of cut sets was fixed at 20, and the proportion of don't care values
fixed at 0.8. We compared the computer time required to compute P(S) to
machine accuracy, i.e., 16 decimal places for the machine used. The results
are presented in Table 2, and in graphic form in Fig. 2.

The first three lines of Table 2 show the results of solving random
coherent problems with single block structure by Abraham, Nakazawa, and by
STOP alone, (no DECOMP). These are the worst case complexity functions for
STOP because random problem sets have less structure than those from regular
fault tree problems. It is interesting to note that for the three tree sizes
tested, the relative speed of STOP alone increased from approximately five to
eight times as fast as Nakazawa, and from about eleven to fourteen times as
fast as Abraham, as N increased from 30 to 45. For trees with over 45
components, it was not feasible to run the computer on Abraham's and
Nakazawa's methods long enough to calculate P(S).

Although STOP is significantly faster than Abraham and Nakazawa in the
worst case, the advantage is not as significant as when DECOMP is used
together with STOP on some of the same problem sets. The results of this
comparison are shown on line A of Table 2. We see that, for a fault tree of
size 45 components, STOP alone reduced computation time from Abraham's 400s to
30s, and DECOMP and STOP together further reduced this time to ten seconds.

SIGMA (STOP plus DECOMP) required far less time when problems with block

structure were tested. As shown on lines A, B, and C for 50 component fault

28

Table 2. Performance Comparisons of Exact Methods

Times in Seconds to Compute P(S) - Cray Computer

Exact Method
(16 decimal places)

Test Fault Tree
(Number of Components, T)
30 40 45 50

ABRAHAM

11.0 107.0 400.0 --=

NAKAZAWA

5.0 63.0 228.0 --

STOP ALONE

1.0 10.0 29.5 6y, 2

STOP + DECOMP:
A Single Block
B Two Blocks
C Four Blocks

D Five percent of line A
Y (3 place accuracy)

-- 5.0 10.0 29.5
-- -- - 0.6
-- -- -- 0.12
-- 0.25 0.50 1.48

29

COMPUTER TIME (SECONDS)

100

90

80

70

60

50

40

30

20

10

400s

228s

| NAKAZAWA

107s

ABRAHAM

™ STOP AND DECOMP

‘ MULTIPLE BLOCKS
30 40 45 50

NUMBER OF COMPONENTS, T
Figure 2
PERFORMANCE COMPARISON OF EXACT METHODS

-30-

trees with block structure, the 29.5s for a single block is reduced to 0.6s
with two blocks, and, with four blocks, to 0.12s. This can be compared to
Abraham and Nakazawa, whose times would have far exceeded 4003, had they been
allowed to complete their calculations.

For completeness, we note that these performance tests were all run on a
CRAY computer, which has some optimizing features for performing certain
Boolean operations. These features were used to give added speed to SIGMA
algorithms where they could use them. Because of differences in techniques
used by Abraham and Nakazawa, similar advantages could not be taken fully for
these methods on the CRAY.

The overall results presented here are unchanged by the use of these
features, because at most, they could have caused a minor shift in the SIGMA
results a bit to the right on the graph of Fig. 2. The shape of each graph

would remain the same if these optimizing features had not been employed.

3.3.2., Experiment #2 - Comparing the Full SIGMA Method

The second experiment demonstrates the computer effort that can be saved
when PROB is used to control accuracy. We accomplished this by running SIGMA
on a single problem with 30 basic events and 100 cut sets. Although of medium
size, this is a challenging problem set for SIGMA in that it consists of a
single block, and the basic event probabilities range uniformly between 0,1
and 0.9. By contrast, convergence tends to be considerably faster when event
failure probabilities are between 0.0 and 0.1.

Figure 3 displays the computation accuracy attained by SIGMA as a

function of computation time for the first 15 seconds. The left hand ordinate

31

PROBABIL ITY

.785

784

.783

.782

.781

.780

.779

.778

777

.776

775

774

u(1.1s) = 0.785 |

SIGMA ACCURACY 1N P(S) vs COMPUTER TIME

u(1.s) = 0.78050
U(2.0) = 0.78005 . 8
PROBABILITY
\\\\\ 7
L(2.0) = 0.77995 6
L(1.5) = 0.77950
5
4
U-L = 0,007 at d.mmm Q= 3 PLACE ACC 3
rﬂd.ﬂmv =0.775
1
. . ° c

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

SECONDS oF COMPUTER TIME

-

Figure 3.

COMPUTAT 10N ACCURACY (a)

-32.

measures upper (U) and lower (L) probability limits computed by SIMMA, which
converged rapidly to attain three decimal place accuracy in about 1.5
seconds. The right hand ordinate indicates the computation accuracy in terms
of alpha (a), the number of decimal places, i.e., U - L = 10 %, We can see
that it took 14 seconds to attain about seven place accuracy. Not shown is
the final accuracy attained: 12 place accuracy in 20 seconds.

This experiment demonstrates the general case in which convergence of the
upper and lower bounds is very rapid at first, then tapers off for a while as
intermediate accuracy levels are reached, and then speeds up again before the
"exact" solution is computed,

The times shown in Fig. 3 are consistent with general experience with
various problem sets of this approximate size, which has shown that SIGMA
usually reaches three place accuracy within five percent of the time required
for machine accuracy (16 decimal places). For larger problem set sizes, time
requirements for three place accuracy tend to diminish below five percent.

We can now estimate the overall performance of the SIGMA method over that
of STOP alone for general problem set sizes used in experiments 1 and 2. Line
A of Table 2 represents times required by STOP + DECOMP for three tests. To
estimate the time required by the full SIGMA method to attain three place
accuracy (STOP + DECOMP + PROB), we multiplied the three values on this line
by 0.05. The three results are displayed on line D of Table 2. Based on

these results, we estimate that STOP alone took from 40 to 70 times as long as

SIGMA would have taken to attain three place accuracy.

33

3.4, COMPARISONS WHEN BASIC EVENTS ARE DEPENDENT

The performance tests in the previous sections compare the relative
speeds and accuracies between SIGMA PI and the five alternative methods when
the calculation of set probabilities is no real problem. As explained in
Section 3.1, this condition was purposely invoked by running all performance
tests with statistically independent basic events.

But, as explained in Section 1.3, serious computational difficulties can
arise when too many dependencies among basic events remain after all attempts
to remove them, such as an application of the P! method, have been made. We
can show that even though all evaluation methods will have similar
difficulties in computing the set probabilities, P(D(j)), the SIGMA method
alone can still produce useful results when the results from alternatives are
meaningless.

Suppose many cut sets contain more dependent basic events than any of the
methods can evaluate, say, over five dependencies per set. (See Probabilistic
Problems in Section 1.3 above.)

In the case of exact evaluation alternatives, all possible disjoint sets
can be generated, but only those with five or less dependent basic events can
be evaluated. If only these probabilities are added, only a lower bound to
P(S) is produced. Similarly, in the case of an upper bounding method, only a
lower bound to the upper bound is computable, sc the result isn't even known
to be an upper bound. In either case, an estimated value of P(S) can be
given, but the user will end up with little indication of its accuracy.

In the case of SIGMA PI, either:

"314—

1D

The accuracy required for P(S) will be attained and reported as

such; or,

SIMA will run out of disjoint sets that it can evaluate before the
required accuracy is reached. In this case, SIGMA will report an
estimated value for P(S) and give firm upper and lower bounds to its

value.

35

ACKNOWLEDGMENTS

The authors greatfully acknowledge the support of the Risk Analysis and
Operations Division of the Office of Nuclear Regulatory Research. The
continued encouragement and technical discussions provided by Dale Rasmuson

are appreciated.

36

REFERENCES

J. A, Abraham, "An Improved Algorithm for Network Reliability," IEEE

Transactions on Reliability, R-28, No. 1, 58-62, April 1979,
G. C. Corynen, "'STOP': A Fast Procedure for the Exact Computation of
the Performance of Complex Probabilistic Systems," UCRL-53230,

January 1982.

G. C. Corynen, "Evaluating the Response of Complex Systems to

Environmental Threats: The SIGMA PI Method," UCRL-53399, May 1983,

W. Feller, "An Introduction to Probability Theory and Its Applications,"

Vol. 1, John Wiley and Sons, Inc., New York, Second Edition, 1957.

D. Hunter, "Bounds for the Probability of a Union," TR73, Series 2,

Department of Statisties, Princeton University, February 1974,

D. Hunter, "An Upper Bound On the Probability of a Union," Journal of

Applied Probability, 13, 597-603, 1976.

H. E. Lambert, "Fault Trees for Decision Making in Systems Analysis,"

UCRL-51829, October 1975.

-37~

10.

1.

12.

13.

H. Nakazawa, "A Decomposition System for Computing System Reliability by
a Boolean Expression," IEEE Transactions on Reliability, R-26, No. U,

October 1977.

R. C. Milton, "Computer Evaluation of the Multivariate Normal Integral,"

Technometrics, Vol. 14, No. U4, November 1972,

R. M. Thatcher, "Evaluating the Effects of Seismic Events on Systems In A

Nuclear Facility Using the SIGMA PI Method," UCID-19810, May 1983.

J. E. Wells, et al., "SSMRP Phase I Final Report - Systems Analysis

(Project VII)," NUREG/CR-2015, Vol. 8, November 1981,

V. K. M, Whitney, "Algorithm 422 - Minimal Spanning Tree [H]," Department

of Electrical Engineering, University of Michigan, August 1971.

R. R. Willie, "Computer-Aided Fault Tree Analysis," ORC 78-14, Operations

Research Center, University of California, Berkeley, CA, August 1978,

38

